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Abstract

Random walk methods and diffusion theory pervaded ecological sciences as
methods to analyze and describe animal movement. Consequently, statistical
physics was mostly seen as a toolbox rather than as a conceptual framework
that could contribute to theory on evolutionary biology and ecology. However,
the existence of mechanistic relationships and feedbacks between behavioral
processes and statistical patterns of movement suggests that, beyond movement
quantification, statistical physics may prove to be an adequate framework to
understand animal behavior across scales from an ecological and evolutionary
perspective. Recently developed random search theory has served to critically
re-evaluate classic ecological questions on animal foraging. For instance,
during the last few years, there has been a growing debate on whether
search behavior can include traits that improve success by optimizing random
(stochastic) searches. Here, we stress the need to bring together the general
encounter problem within foraging theory, as a mean for making progress in the
biological understanding of random searching. By sketching the assumptions
of optimal foraging theory (OFT) and by summarizing recent results on random
search strategies, we pinpoint ways to extend classic OFT, and integrate the
study of search strategies and its main results into the more general theory of
optimal foraging.

PACS numbers: 87.19.rs, 87.23.Kg, 87.10.Mn, 87.10.Rt

Introduction

Random walks and diffusion theory initially penetrated into ecology as methods to analyze and
describe animal movement (e.g., [1, 2]). Statistical physics was mostly seen as a toolbox rather
than as a conceptual framework that could contribute to evolutionary biology and ecology. In
this way, the possibility that certain statistical features of movement patterns could emerge
from behavioral rules aimed to increase search efficiency was not an a priori assumption.
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However, during the last few years, there has been an on-going debate on whether organism’s
behavior can include traits that aim to improve the foraging success based on rules of optimal
random (stochastic) searches (for a review, see [3]).

Evolutionary functionalism seeks for understanding morphological, physiological and
behavioral traits in terms of how they increase an organism’s fitness. Implicitly, it assumes
that organisms conform to some optimization principles in their physical performances, which
may conduct to understanding why organisms are, what they are, and do what they do.
Population genetics demonstrates that the idea that evolution maximizes fitness is only an
approximation, which is particularly clear in maladaptations occurring because of inbreeding
and genetic drift in small populations [4]. Beyond purely genetic limits, there are several
ecological and evolutionary aspects that limit or prevent full optimization of particular traits in
organisms. First, selection pressure on some traits decreases as soon as suboptimal solutions
sufficiently contribute to fitness and other selective pressures become more critical for the
final outcome. Second, individual traits only cover a part of the whole process contributing
to fitness, optimization of some traits may be irrelevant compared to the relevance of others,
or even there may exist trade-offs between traits, so the final maximization of fitness can,
in fact, appear from different combinations of partial trait optimizations. Finally, organisms
interact with the environment and other organisms as well; thus behavioral optimization goes
beyond an individual’s isolated decisions, and it also depends on the decisions of the rest of
the population, as well as on the nature and evolutionary responses of the interacting species.
The understanding of this interdependence of individual strategies’ payoffs may demand using
evolutionary game theory [5–8] instead of classic optimization theory [9].

Natural selection has an astonishing capacity to create complex adaptations, and all in
all, it causes the appearance of conceivably optimal design. Nevertheless, careful inspection
provides evidence of vestigial structures, functional relicts, largely suboptimal traits, which
denotes the contingent trial and error process inherent to natural selection as an evolutionary
agent. These general concerns about optimization have caused skepticism about the
so-called adaptationist program [10–13] and the actual implications of any theoretical analysis
based on an optimality rationale [14, 15]. However, optimization analyses become extremely
useful in evolutionary biology when they are not exclusively seen as hypothesis to test
in the Popperian sense but as archetypical options to confront with real animal behavior
[16–18].

Defining the biological context of the optimization process is crucial to figure out its
evolutionary implications [19]. A search process, for example, acquires evolutionary sense
when considering the purpose (context) of that search, for instance, foraging or reproduction.
Yet, considering the physics of the searching alone can provide a greater level of generality to
the problem, leading to a better understanding of animal search strategies than that obtained
from specific species case studies. In fact, statistical physics and random walk theory allow
us to mathematically define and test search optimization models in a very broad context. But
of course, only through empirical evidence can we evaluate how feasible these models are in
nature. For example, several theoretical studies have shown that power-law or scale-invariant
displacements (i.e. Lévy walks) may be efficient strategies under specific (though general
enough) search conditions [20], but so far, the empirical evidence of Lévy walks as search
strategies is not strong enough. First, power-law or scale-invariant behavior (Lévy type of
statistics) is always difficult to assess from short-length empirical data sets such as those
usually available in ecological studies [21–25]. Second, the power-laws are expected to be
truncated at some scale; therefore, when upscaling these patterns we might lose the original
statistical signals. Third, it may happen that these statistical patterns had nothing to do with
behavioral rules for efficient stochastic searching and come from other sorts of behavioral
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rules or from environmental forcing as discussed in [26–28]. All these aspects have recently
been debated in the scientific literature, e.g., [22, 23, 29, 30–32].

Our aim here is to show that in order to progress in accepting (or rejecting) the
relevance of random search optimization in a biological and thus evolutionary context, the
framework of analysis has to be enlarged considering the ultimate biological function of
the search, either food acquisition or mating. In particular, we will consider how emerging
views of random search as adaptive traits can be considered within foraging theory and
analyzed from an optimization perspective. Furthermore, we discuss how statistical physics
contributions to foraging can, in certain instances, show under which circumstances random
search optimization may (or may not) be relevant for survival.

First we make a brief introduction to the traditional optimal foraging theory, essentially
the patch model and its main assumptions. Next we discuss the role of the search component
in this conceptual framework including inter-patch and within patch search, and random and
systematic searching. Then, we introduce the key issue of behavioral intermittence and we
describe general stochastic search rules that can help us to comprehend how animals may
adjust random search strategies to increase the search efficiency. Finally, we comment on
some aspects that appear crucial for fruitfully merging optimal search theory and bring new
interesting ideas and hypothesis to the fields of animal behavior and movement ecology [33]
in general.

A brevia on classic optimal foraging theory

Optimal foraging theory (OFT) is one of the most extensively developed biological
optimization theories, e.g., [34–37]. Suppose a predator (consumer) that hunts (feeds) on
patchily distributed prey or resources (e.g. a patch meaning a high resource area compared to
the average environment). It spends its foraging time traveling between patches or searching
and handling food within patches. Moreover, while it is searching it gradually depletes the
food within a patch. Therefore, the benefit of staying in the patch gradually diminishes with
time [38]. In their review of OFT, Pyke et al [39] listed four problems a forager might face:
(1) what prey to take (optimal diet choice), (2) what patch type to search (optimal patch
choice), (3) when to leave a patch (optimal giving up or departure times from patches) and
(4) how to move between patches (optimal movements). The optimality approach to foraging
assumes that animals should make decisions, according to optimal decision rules, so as to
maximize their foraging efficiency. Therefore, mathematical models of a particular foraging
problem seek for solutions that usually maximize energy intake per unit time spent foraging,
although other efficiency functions might be adequate as well [34].

The nugget of the OFT has been the marginal value theorem [40] illustrated in figure 1.
It states that if the predator aim is to maximize the net energy gain while foraging in a patchy
environment, it should leave any particular patch when the expected net gain from staying
drops to the expected net gain from traveling to and starting to search in the next patch. In other
words, the marginal value theorem [40] specifies the best leaving rule for a deterministic model
in which the net energy gained after searching for unit of time S in a patch is a continuous
function, G(S), with a negative second derivative. The forager should leave a patch when
dG(S)

S

∣
∣
S=S∗ = limt→∞

∫ t

0 G(τ) dτ , for G already averaged over possible different types of
patches and S∗ denoting the departure time from a patch. As stated by Green [41], one of the
attractions of the marginal value theorem is that it simultaneously illustrates the relationships
among several variables (see figure 1): (1) G itself is a function of S. (2) The rate of finding
a prey at any time, S, is a derivative, G′, which is shown as the slope of G at S. (3) The
long-term rate of finding a prey achieved by a forager leaving each patch at time S, namely
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Figure 1. The x-axis on the right of the y-axis represents patch exploitation time, and to the left of
the y-axis represents travel time increasing toward the left. At each expected travel time A, B and C
there is a corresponding and distinct tangent point that determines the optimal patch time for each
patch (a, b and c), and therefore also the different marginal values. As long as the expected travel
time increases, the marginal value (here the slope of the straight lines) for the patch decreases. The
left inset shows a schematic illustration of the ecological setup assumed in classic optimal foraging
theory and its two major components: patch exploitation and inter-patch movement. The right
inset shows different patch exploitation curves. The search component (random or systematic) can
impinge either in the inter-patch travel times or in the patch exploitation curves. (Redrawn from
[42]).

(This figure is in colour only in the electronic version)

R = G(S)/(S + T ), is the slope of the secant line from (−T , 0) to (S,G(S)), where T is the
travel time between patches.

The patch model of foraging has three components. One, the animal decision: whether
to continue exploiting the patch or abandon it to search for another. Two, the currency or
efficiency function: the long-term net rate of energy intake. And three, the assumptions
on predator and prey behavior. The model assumes that the predator has all the information
necessary for a rational decision: it can recognize a patch instantaneously, it knows the average
travel time between patches in the habitat and the expected quality of the patches [42]. Even if
some of the assumptions do not look very realistic, the model predictions match qualitatively
with some empirical data (e.g., [43]). Further, there are more realistic models which relax
the assumption that the forager has full knowledge on the habitat, either by considering that
animals must expend some effort in sampling patches previously to exploitation [44, 45] or by
accounting for stochasticity in the patch exploitation process [46]. Clearly, the optimal rules
that govern the behavior of an animal that does not know everything about its foraging ground
are quite different from those of an animal that already has all the available information. In
the former case, optimal motility strategy and sensorial capacity are of much relevance.

The search component in classic optimal foraging theory

Foraging can be divided into different sequences of events depending on the trophic level
or the peculiarities of the species considered [47]. Classic OFT distinguishes decision (e.g.,
diet choice, patch departure condition) and energy costly activities (e.g., patch exploitation,
movements between patches). The latter have been subdivided in different ways. For
example, MacArthur and Pianka [48] considered search and pursuit (including capture
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and eating) as the basic costs of a foraging process, Shoener [49] distinguished search,
pursuit and handling/eating costs, and Collier and Rovee-Collier [47] distinguished search,
identification, pursuit, handling, as well as consumption (ingestion), and utilization (e.g.
digestion, absorption) costs. Importantly, most feeding sequences involve two main categories
of events: pre-encounter (the search) and post-encounter events (e.g. the pursuit, handling,
digestion), the latter occurring after the target has been detected. The relative importance
of the search component among other components of the foraging chain is scale dependent.
In other words, the search can come into play differently at distinct scales. At least two
main scales should be distinguished based on the notion of a ‘patch’: the large scale related
to travel between patches and the small scale related to prey search within a patch. Can a
given search strategy optimize between and within patch scales at the same time? How much
information do animals use and how do they get this information outside and inside patches?
These are difficult questions to answer but, as pointed out in [50], these questions lie at the
core of understanding the decisions made by foraging animals, and in particular, the search
strategies employed. In fact, ambiguities exist, e.g., as how to exactly define a patch for a
given animal [51], and how much information animals use in making their decisions. These
are very difficult issues to settle [39]. However, reasonable answers can be obtained from
independent experiments designed to explore the memory or perceptual capabilities of the
animals within and without patches [39, 52].

Although inter-patch movements have been considered, e.g., [39, 53], in general, optimal
foraging models tend to oversimplify the large-scale search problem (i.e. patch detection)
and focus the attention on the role of search strategies as a patch depletion/exploitation
mechanism. Most models of OFT typically assume that animals have information about the
location of the patches so that the time spent between patches does not come out from a search
process, instead from the average distance between the patches. Hence, the average travel
time between patches is assumed to be an attribute of the landscape (i.e. patch distribution
and dynamics) and not of the animal search behavior. As information on patch locations is
assumed to be known, the foraging process is commonly idealized as a ‘traveling salesman’
type of the optimization problem [55] rather than as a search optimization problem. In
classic OFT, the search component only contributes to determine how prey are depleted within
patches: the diminishing slope of the curve G(S) is assumed to represent the gradual resource
depletion due to searching and feeding within a patch. Coherently, early stochastic versions
of Charnov’s model associated simple stochastic movement patterns (i.e. Brownian motion,
normal diffusion) with patch depletion dynamics [54, 56, 57]. However, there is no general
argument to sustain that random searching might always involve simple statistical properties
or that it only occurs within patches. For example, if the environment is new (e.g. natal or
juvenile dispersal, relocation experiments), highly dynamic (e.g., environmental forcing, many
competing individuals), or simply unachievable as a whole to perception/cognitive abilities,
foraging animals may need to search for patches as well as for targets within them. In the end,
all may depend on our definition of what a patch or a target is, which, in turn, depends on what
we believe the main animal sensorial capabilities are. From this perspective, classic OFT fails
to recognize a wide range of foraging scenarios where the search and its stochastic component
may play a strong role. Foraging uncertainty should be recognized as a complex scale and
species-dependent phenomenon that includes much beyond the absence of environmental cues
within patches.

Classic OFT will become closer to the real biological situation by adequately integrating
the search component at different scales of the foraging process, and considering different
scenarios regarding the amount of information available and the perceptual capabilities of the
searcher at those different scales (e.g. outside and inside patches). The relationships between
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the exploration and the perceptual scales [52, 58], and the consideration of a continuum of
possibilities between highly informed (e.g., learning, cognitive maps) and poorly informed
foragers (e.g., disorientation, sensorial failures) are thus important elements of foraging theory
that need to be revised.

Systematic and random searches

Early stochastic versions of Charnov’s model studying the problem of when a forager should
leave a patch already distinguished between systematic and random search within patches,
e.g. [54, 56, 57]. In systematic searching, it was assumed that the forager does not retrace
its steps and hence the prey capture rate is assumed to be constant with time in the patch.
By random search it was usually meant that a spot within a patch is equally likely to be
searched whether or not it has been searched before. Thus, mathematically random search
results in a rate of finding a prey that decreases exponentially with time in the patch, e.g.,
[41, 59]. According to Baum [59] an organism that moves about randomly in space fails
to discriminate one location from any other, while if it moves about systematically then it
does discriminate. Discrimination usually saves time and energy because then no attempts to
situations that previously have been unsuccessful are repeated. Therefore, according to Baum
[59], to be systematic means to be efficient.

As a first approximation these are acceptable assumptions; however, it is clear that a
more elaborate reasoning is necessary to incorporate all the evolutionary potential of search
strategies (either random or systematic) in foraging processes. First of all, systematic search
strategies can only be efficient when some a priori relevant (although partial) information
about target characteristics or patch locations is available [60]. The application of systematic
searching based on misleading or meaningless information may lead to persistent errors and
biases. Second, it is not a straightforward consequence that systematic searches would lead to
constant prey capture rates. Even if a systematic search is simplistically defined as a search
where the forager does not retrace its steps or where the locations are visited in a certain order
(e.g. trapline foraging), capture rates depend, among other things, on the prey distribution:
if the distribution is not uniform, the capture rates do not necessarily need to be constant in
time. Last but not least, random searches are not totally unstructured searches, and hence,
some amount of discrimination exists, even if stochastic. For example, random searching
does not necessarily involve that all the spots within a patch are equally likely to be visited
[54]. Different random searches cover the space differently and show different probabilities of
revisiting certain areas [60, 61]. Random searching may also decrease competitive exploitation
and interference in high-quality spots allowing much higher or less variable capture rates than
systematic searching. Also, in the cases where the learning capacity of the prey cannot be
discarded one must take into account the fact that the more systematic the predator’s search,
the easier for the prey to develop efficient escaping strategies.

There is a good deal of empirical evidence of systematic behavior in foraging movements
(both between and within patches) but animal search displacements with no evident pattern
are also common. For example, Pyke et al [50] summarize evidence that bumblebees tend
to begin foraging in an inflorescence at the lowest flowers and move regularly upward when
shifting to a new flower. Hummingbirds, in contrast, show little evidence of regularity when
exploiting an inflorescence. Baum [59] observed systematic foraging within patches in his
laboratory study of pigeons. Exceptions to the general prevalence of pigeons systematic
foraging arose from unusual performances in the initial trials after a change of conditions.
Thus, continued experience with the conditions appeared to change the pigeons’ performance
to one better described by systematic foraging. Similar examples of transitions from random to
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systematic strategies (e.g. trapline foraging) can be found in hummingbirds and bumblebees,
based on experiments designed to increase the predictability of nectar-refilling patterns in
artificial flowers [62, 63]. However, the same authors recognize that the extension to what
learned systematic search mechanisms might work in more complex situations still remains
uncertain [62, 63]. Indeed, as the information on the location of the targets is degraded
or it turns unreliable, forager efficiency may switch from a systematic to a random search
strategy. For example, when animals have to return back to their homes (i.e. homing behavior)
knowing that they are close by but without precise clues of where their home is, they can try
a systematic search strategy (e.g. Archimedean spiral, foray search). If their home (e.g., nest,
burrow) is not found, the animals may resolve to use a mixture of systematic (i.e., returns to the
starting point) and random (i.e., meandering) search [64, 65]. In summary, empirical evidence
points to two important facts: (i) the type of search strategy employed by animals (whether
systematic or random) strongly depends on the amount of information that is involved in the
search process, and (ii) random searching is a possible strategy when information is lacking,
confusing, difficult to gather or even when it is important to minimize prey learning capacities.

The unavoidable evidence of non-systematic foraging in nature suggests that random
search is a potential competitive strategy worth considering in OFT and not just a simple
mathematical convenience [59]. As available information regarding positional, kinetic or
behavioral characteristics of targets decreases, systematic searches become less effective.
In these situations, animals must attempt to increase their chances of locating resources by
heterogeneously sampling the space and by adjusting the balance between local and global
exploration [60]. Future theoretical models should explore those situations where random
searches might be more efficient than systematic searches, and identify what natural conditions
need to be fulfilled. In general, random (stochastic) processes are well known in biology
[1, 2, 66], although biologists might differ in their estimation of the relative importance of
these processes. The study of random search strategies, using the common approaches of
statistical physics, could help us to adequately square the role of stochastic processes in the
context of optimal foraging.

The intermittent nature of the search

Ideally, the rules of searching included in OFT should link as much as possible with true
biological mechanisms. Search models can be constructed either with the simple aim of
phenomenologically matching the observed patterns in nature or can be based on true biological
first principles. In the latter case, we should wonder about which are the mechanisms that
allow animals to perform efficient stochastic searches in a foraging process. To answer this
question it is essential to consider animal behavior, and in particular, animal locomotion as
intermittent phenomena [67, 68]. Here, by behavioral intermittence we mean movements,
which are intrinsically discrete, in which the whole concept of ‘discrete walking’ may have
real biological significance. Animals can behaviorally discretize their movement in a series of
move lengths (displacements), pauses and turns (reorientations) as a response to certain cues
of the environment [58, 69]. A consequence of behavioral intermittence is the possibility of
breaking the previous directional persistence of a walk with strong reorientations [58, 69, 70].
When the environmental or resource information is confusing or very much reduced, animals
could adjust their reorientation behavior in order to generate Lévy-type search strategies, e.g.
[20, 61, 70–74]. Some empirical evidence consistent with Lévy-like movement patterns exists,
e.g. ([75, 76], but see [3] for a thorough review). Given the difficulty to get good enough
statistics from movement patterns, perhaps more relevant is the empirical evidence of specific
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reorientation mechanisms capable of changing the statistical properties of movement across a
wide range of species from bacteria to birds [77–82].

Scanning for prey cues or food is costly activity that can hardly be continuously maintained
at high performance. Physical constraints on sensorial activities at high speeds can also deprive
animals from continuous scanning. Hence, scanning behavior is often intermittent as well
[78, 83–85]. O’Brien et al [78] identify saltatory searches as searches where animals scan
only during pauses whereas displacement phases serve only to rapidly relocate the animal into
previously unscanned areas. In some animals, the opposite occurs: perceptual abilities are
increased and even optimized while moving, whereas they are literally ‘blind’ during pauses,
e.g. [86]. Another strategy to improve random search efficiency might involve controlling
the proportion of time spent in relocation and scan phases [83–85]. Saltatory scanning
combined with Lévy reorientation behavior can produce a variety of efficient random search
strategies, e.g. [85, 87]. Adaptive behavioral plasticity may exist to accommodate both
reorientation and scanning patterns to particular environmental conditions. For example,
different species of grassland birds showed continuous or saltatory search depending on
whether the grass was low or high, respectively. If the grass is low, ground walk, continuous
scanning is not costly and improves encounter probabilities with the prey. If the grass is
too high, it becomes more efficient to combine ground-walk local scanning with relocation
flights [88].

Optimal search strategies: merging evolutionary and mechanistic approaches to the

encounter problem

Animal searches can be viewed as decision-making processes that result in a series of
displacements and orientations. The former are energy dependent, whereas the latter are
mainly shaped by information fluxes. Of note, the absence of information might be valuable
information in itself, capable of triggering certain types of stochastic search strategies. The
capacity to obtain, store and use both assets to deal with environmental uncertainties differs
from organism to organism. Provided that optimal search strategies may be critical in
determining prey (food) encounter rates, there is a need to integrate (both empirically and
theoretically) the study of search strategies and its main results (e.g. current special issue) into
the more general framework of optimal foraging theory.

From a biological perspective, an efficient search mode would not only involve the
existence of specific search strategies that can be effective in particular situations but also, more
generally, the flexibility to deal efficiently with a changing environment [73]. Hence, it may
be of great value to acknowledge from the very beginning that (i) animals may show plasticity
and change strategies depending on the circumstances as part of their natural evolutionary
inheritance, (ii) even though we can develop theoretical optimal strategies for each separate
component of the foraging activity, evolutionary trade-offs between foraging components
might prevent a universal solution, and (iii) both prey and competitors tend to optimize, thus,
the coevolutionary game is the rule not the exception.

Which particular foraging component is more important or which one is first optimized
may respond to random attempts (mutations); however, this initial selection may condition the
degree of optimality that can be achieved in other components. In any case, evolutionary trade-
offs among different components of the foraging activity may canalize potential searching
repertoires into more limited collections of search skills that can, thus, be studied. Progress
in the development of foraging theory has to include an analysis of the hierarchy of trade-offs
between the different foraging components. In that way, we should be able to define to what
extent search strategies, and in particular, random search strategies, may be relevant to the
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foraging efficiency of a particular animal species. Under the evolutionary view of optimal
foraging theory, prey can be considered as simple passive victims; however, this is rarely
the case. In the evolutionary game, prey responses may include from deterrent substances to
avoidance behavior. Developments of search theory have to include at some stage how to deal
with these responses and how these affect the foraging behavior itself [5].

Even though optimal search solutions show strong sensitivity to the initial and the
boundary conditions related to the search problem (e.g., the location of the searcher relative
to the targets, the perceptual scales of the searcher compared to the exploration scales, the
average distance between targets, the initial amount of information about targets), recent
theoretical studies on random search strategies illustrate the fact that some of the search
rules are general and simple enough to eventually become behavioral traits susceptible to
natural selection. Among candidate drivers of efficient stochastic searching are biological
mechanisms accounting for ballistic motions, e.g. [48], adjusting the timing of reorientations
when continuously scanning, e.g. [65], generating adequate proportions of relocation and
scanning times, e.g. [78, 79], or a combination of the last two, e.g. [80, 83]. The potential real
adaptiveness of a random search strategy should be evaluated based on: (i) how common in
nature the initial and the boundary conditions assumed in the model are, (ii) how robust is the
strategy to relaxation of these conditions and (iii) how plausible is the mechanism generating
the stochastic properties of the strategy from a biological point of view.

Definitively, a more mechanistic approach to the search/encounter problem within the
framework of foraging theory will set the right scene to explore the direct connections between
animal behavior and stochastic properties of motion, and give further light to the open debate
on whether adaptive stochastic mechanisms exist and play a role in animal foraging.
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[3] Viswanathan G M et al 2008 Lévy flights and superdiffusion in the context of biological encounters and random
searches Phys. Life Rev. 5 133–50

[4] Futuyma D J 1998 Evolutionary Biology 3rd edn (Sunderland, MA: Sinauer Associates Inc.)
[5] Dickman U and Law R 1996 The dynamical theory of coevolution: a derivation from stochastic ecological

processes J. Math. Biol. 34 570–612
[6] Giraldeau L-A and Caraco T 2000 Social Foraging Theory (Princeton, NJ: Princeton University Press)
[7] Nowak M A 2006 Evolutionary Dynamics (Cambridge: Harvard University Press)
[8] Faustino C L et al 2007 Europhys. Lett. 77 30002
[9] Maynard Smith J 1978 Optimization theory in evolution Ann. Rev. Ecol. Syst. 9 31–56

[10] Gould S J and Lewontin R C 1979 The spandrels of San Marco and the panglossian paradigm: a critique of the
adaptationist programe Proc. R. Soc. B 205 581–98

[11] Lewontin R C 1979 Fitness, survival and optimality Analysis of Ecological Systems ed D H Horn, R Mitchell
and G R Stairs (Columbus, OH: Ohio State University Press) pp 3–21

[12] Mayr E 1982 The Growth of Biological Thought: Diversity, Evolution and Inheritance (Cambridge, MA:
Harvard University, Belknap Press)

[13] Sarkar S 2005 Maynard Smith, optimization, and evolution Biol. Philos. 5 951–66
[14] Brady R H 1982 Dogma and doubt Biol. J. Linn. Soc. Lond. 17 79–96

9

http://dx.doi.org/10.1016/j.plrev.2008.03.002
http://dx.doi.org/10.1209/0295-5075/77/30002
http://dx.doi.org/10.1146/annurev.es.09.110178.000335
http://dx.doi.org/10.1098/rspb.1979.0086
http://dx.doi.org/10.1111/j.1095-8312.1982.tb02015.x


J. Phys. A: Math. Theor. 42 (2009) 434002 F Bartumeus and J Catalan

[15] Gray D R 1987 Faith and foraging: a critique of the ‘paradigm argument from design’ Foraging Behavior
ed A C Kamil, J R Krebs and H R Pulliam (New York: Plenum)

[16] Parker G A and Maynard Smith J 1990 Optimality theory in evolutionary biology Nature 348 27–33
[17] Alexander R M 1996 Optima for Animals (Princeton, NJ: Princeton University Press)
[18] Barton N H, Brigss D E G, Eisen J A, Goldstein D B and Patel N H 2007 Evolution (New York: Cold Spring

Harbour Laboratory Press)
[19] Mylius S D and Dikmann O 1995 On evolutionary stable life histories, optimization and the need to be specific

about density dependence Oikos 74 218–24
[20] Viswanathan G M et al 1999 Optimizing the success of random searches Nature 401 911–4
[21] Sims D W et al 2007 Minimizing errors in identifying Lévy flight behavior of organisms J. Anim. Ecol. 76 222–9
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[24] Edwards A M 2008 Using likelihood to test for Lévy flight search patterns and for general power-law distributions

J. Anim. Ecol. 77 1212–22
[25] White E P et al 2008 On estimating the exponent of the power law frequency distributions Ecology

84 905–12
[26] Benhamou S 2007 How many animals really do the Lévy walk? Ecology 88 1962–9
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to resource availability in microzooplankton Proc. Natl Acad. Sci. USA 100 208–13

[76] Reynolds A M et al 2007 Displaced honey bees perform optimal scale-free search flights Ecology 88 1955–61
[77] Pienkowski M W 1983 Changes in the foraging pattern of plovers in relation to environmental factors

Anim. Behav. 31 244–64
[78] O’Brien W J et al 1990 Search strategies of foraging animals Am. Sci. 78 152–60
[79] Ricci N 1990 The behaviour of ciliated protozoa Anim. Behav. 40 1048–69
[80] Korobkova E et al 2004 From molecular noise to behavioural variability in a single bacterium Nature 428 574–8
[81] Maye A et al 2007 Order in spontaneous behaviour PloS ONE 2 e443 doi:10.1371/journal.pone.0000443
[82] Reynolds A M and Frye M A 2007 Free-flight odor tracking in Drosophila is consistent with an optimal

intermittent scale-free search PloS ONE 2 e354 doi:10.1371/journal.pone.0000354
[83] Benichou O et al 2006 Intermittent search strategies: when losing time becomes efficient Europhys.

Lett. 75 349–54

11

http://dx.doi.org/10.1016/0169-5347(96)81094-9
http://dx.doi.org/10.1016/0040-5809(83)90038-2
http://dx.doi.org/10.1016/0040-5809(77)90046-6
http://dx.doi.org/10.1016/0040-5809(80)90051-9
http://dx.doi.org/10.1086/283754
http://dx.doi.org/10.1142/S0218348X07003460
http://dx.doi.org/10.1890/04-1806
http://dx.doi.org/10.1140/epjst/e2008-00638-6
http://dx.doi.org/10.2307/1941170
http://dx.doi.org/10.1093/beheco/9.6.612
http://dx.doi.org/10.1007/BF00293798
http://dx.doi.org/10.1007/BF00293799
http://dx.doi.org/10.1111/j.1365-3032.1979.tb00628.x
http://dx.doi.org/10.1668/0003-1569(2001)041[0137:TBEOIL]2.0.CO;2
http://dx.doi.org/10.1073/pnas.0801926105
http://dx.doi.org/10.1103/PhysRevLett.88.097901
http://dx.doi.org/10.1103/PhysRevLett.89.109902
http://dx.doi.org/10.1016/S0378-4371(01)00058-9
http://dx.doi.org/10.1103/PhysRevLett.91.240601
http://dx.doi.org/10.1209/epl/i2004-10114-9
http://dx.doi.org/10.1073/pnas.2137243100
http://dx.doi.org/10.1890/06-1916.1
http://dx.doi.org/10.1016/S0003-3472(83)80195-X
http://dx.doi.org/10.1016/S0003-3472(05)80172-1
http://dx.doi.org/10.1038/nature02404
http://dx.doi.org/10.1371/journal.pone.0000443
doi:10.1371/journal.pone.0000443
http://dx.doi.org/10.1371/journal.pone.0000354
doi:10.1371$/$journal.pone.0000354
http://dx.doi.org/10.1209/epl/i2006-10100-3


J. Phys. A: Math. Theor. 42 (2009) 434002 F Bartumeus and J Catalan

[84] Bénichou O, Loverdo C, Moreau M and Voituriez R 2006 Two-dimensional intermittent search processes: an
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